
1

Department of Mathematics and Computing

IIT(ISM), Dhanbad

Course Name: Operating System Practical

Course Code: MCC512

Lab Location: Computer Lab II, M&C

2

Subject: Operating Systems Lab L T P: 0-0-3

Subject Code:MCC512

Objective: 1) To inculcate the Shell programming skill and its application

2) To understand the concept of processes, threads, Scheduling and Deadlocks

via programming

Sl.

No.

Name of Experiment/Lab Learning Outcomes

1. Introduction to Shell Programming:

Syntax, various commands etc.

Students will Come to Know

about the basics of shell

Programming

2. Algorithm and coding for Shell

Programming

They will Come to Know about

the logic and coding skill of Shell

programming

3. Execution of Shell Programming They will Come to Know about

the execution of Shell

programming

4. Shell Programming continued Finally, They will Come to Know

about Shell programming skill

5. Programming based on Processes They will Come to Know about

the programming for process

creation

6. Programming based on Threads They will Come to Know about

the programming for Threads

creation

7. CPU Scheduling algorithms-FCFS They will Come to Know about

the programming for FCFS

8. CPU Scheduling algorithms-SJF They will Come to Know about

the programming for SJF

9. CPU Scheduling algorithms-RR They will Come to Know about

the programming for RR

10. CPU Scheduling algorithms- Priority They will Come to Know about

the programming for Priority

11. Programming based on Deadlock They will Come to Know about

the programming for Deadlock

12. Lab Exam

3

Do’s

1. Maintain regularity in the Lab work

2. Update the Lab work in Practical Copy

3. Get it Signed by Instructor

4. Learn and Practice

5. Update your knowledge

Don’t Do’s

1. Absentee from Lab Work

2. Shoes/sleeper in the lab

4

The computer program that allocates the system resources and coordinates all the details of

the computer’s internal is called the operating system or kernel. Users communicate with the

kernel through a program known as the shell. The shell is a command line interpreter; it

translates commands entered by the user and converts them into a language that is understood

by the kernel. Otherwise, we can also say that a shell is simply a program that is used to start

other programs. All operating systems like UNIX, Linux, Windows etc., have shells. UNIX is

multiuser system and multitasking.UNIX was originally developed in 1969 by a group of

AT&T employees at Bell labs, including Ken Thompson, Dennis Ritchie, Douglas Mcllory,

and Joe Osssanna. There are various UNIX variants available in the market. Solaris UNIX,

AIX, HP UNIX and BSD are few examples. Linux is also a flavour of UNIX which is freely

available. There are a variety of UNIX shells to choose from. The original and most widely

supported shell is called the Bourne shell (after S. R. Bourne). Its program file name is sh.

Overall, approx 95% of the world’s shell scripts are created for use with the Bourne shell.

There are a number of Bourne shell derivatives, each offering a variety of extra features

including Korn shell (ksh) (after DevidKorn), Bourne again shell (bash), c shell (csh).All data

in UNIX is organized into files and all the files are organized into directories. These

directories are organized into a tree-like structure called the file system. We can use “ls”

command to list all the files or directories available in a directory. There are over 250

standard commands plus numerous others provided through 3rd party software. All the

commands come along with various optional options. A few commands are given in the

following table:

Some Unix

Commands

Description

ls Lists all files or directories in a directory

ls -l Lists all files in long format, one file per line

ls -a Lists all files including hidden files

cd Change directory

mkdir Make directory

vi Opens vi text editor

chmod Changing permissions

find Find files

cat Displays file contents

pwd To know about present working directory

mv To rename the existing file

cp To copy one or more files

man Displays the manual pages for a chosen Unix command

rm Removes files or directories

date Displays current date and time

clear Clear the screen

passwd Change user password

who Displays data about all the user have logged into the system

currently

5

SHELL DECISION MAKING

The if…fi statement

if[expression]

then

 Statement(s) to be executed if expression is true

fi

The if…else…fi statement

if[expression]

then

 Statement(s) to be executed if expression is true

else

 Statement(s) to be executed if expression is not true

fi

The if…elif…fi statement

if [expression 1]

then

 Statement(s) to be executed if expression 1 is true

elif [expression 2]

then

 Statement(s) to be executed if expression 2 is true

elif [expression 3]

then

 Statement(s) to be executed if expression 3 is true

else

 Statement(s) to be executed if no expression is true

fi

SHELL LOOP TYPES

The while Loop

while command

do

Staement(s) to be executed if command is true

done

The for loop

for var in word1 word2 … wordN

do

 Statement(s) to be executed for every word

done

Exercise: Enter these commands at the UNIX prompt, and tryto interpret the output:

i) echo hello world

ii) passwd

iii) date

6

iv) hostname

v) uname -a

vi) uptime

vii) who am i

viii) who

ix) id

x) last

xi) finger

xii) top (you may need to press q to quit)

xiii) echo $SHELL

xiv) man "automatic door"

xv) man ls (you may need to press q to quit)

xvi) man who (you may need to press q to quit)

xvii)lost

xviii) clear

xix) cal 2000

xx)bc -l (type quit or press Ctrl-d to quit)

xxi) echo 5+4 | bc -l

xxii) history

ALGORITHM FOR SHELL PROGRAMMING

1. Write a shell script program to read two numbers and perform basic arithmetic

operations(+ , - , * , / ,%)

Algorithm:

Step 1: Start

Step 2: Read two integers a, b

Step 3: Calculate Sum= a + b

Sub= a – b

Product= a * b

Div=a / b

Rem=a % b

Step 4: Display Sum,Sub,Product,Div and Rem

Step 5: Stop

2. Write a shell script to read three integer numbers and print the largest among three

numbers.

Algorithm:

Step 1: Start

Step 2: Declare variables a,b and c.

Step 3: Read variables a,b and c.

Step 4: if a>b

 if a>c

Display a is the largest number.

7

else

Display c is the largest number.

else

if b>c

Display b is the largest number.

else

Display c is the greatest number.

Step 5: Stop

3. Write a shell script program to read a character from keyboard and check whether it

is vowel or not.

Algorithm:

Step1: Start

Step2: Declare variable ch.

Step3: Read the value of ch.

Step4: if (ch==’A’ || ch==’a’ || ch==’E’ || ch==’e’|| ch==’I’ || ch==’i’|| ch==’O’ || ch==’o’ ||

ch==’U’ || ch == ’u’) then

Display “Entered character is Vowel”

goto Step 6

 else

Step5: Display “Entered character is not Vowel”

goto Step 6

Step 6: Stop

4. Write a shell script to print out the Fibonacci series up to a limit.

Algorithm:

Step 1: Start

Step 2: Declare variables n, a ← 0,b ← 1, c, i

Step 3: Read values of n

Step 4: Display a, b

Step 5: Assign i←2

Step 6: if i< n then goto step 7 otherwise goto step10

Step 7: calculate c ← a+b,

i ← i+1

a ← b, b ← c

Display the value of c

goto step 6

Step 10: Stop

5. To write a shell script to check whether the given number is prime or not.

Algorithm:

Step 1: Start

Step 2: Read an integer n

Step 3: Assign i=2, j=0

Step 4: Is i< n then r =n % i. otherwise goto step 8

Step 5: Is r=0 then increment i and j value by i. otherwise go to step 6

8

Step 6: Increment i value by one

Step 7: Is j=0 then print number is prime and goto step 10

Step 8: Is j != 0 then print number is not a prime number

Step 9: Stop

6. To write a shell script to find the Armstrong numbers between 1 to N.

Algorithm:

Step 1: Start

Step 2: When i equal to 0 and less than or equal to N, calculate increment value of i.

Step 3: Assign value of i to temp and n.

Step 4: Assign value of ams equal to zero.

Step 5: When n not equal to zero calculate

rem←n%10;

ams=ams+rem*rem*rem

n←n/10

Step 6: If temp equal to ams then print the value of ams.

Step 7: Thus for each value of i, values of ams is printed.

Step 8: Stop the program.

7. Write a shell script to perform Conversion of temperature in Celsius to Fahrenheit

And Fahrenheit to Celsius.

Algorithm:

Step 1: Start

Step 2: Input the choice as 1 or 2

Step 3: Is choice is 1 then goto step4 otherwise goto step 7

Step 4: Input temperature in Celsius

Step 5: Calculate Fahrenheit F =((9/5)*c) +32

Step 6: Print Fahrenheit F and goto step 10

Step 7: Input temperature in Fahrenheit

Step 8: Calculate Celsius C=((5/9)*(f-32))

Step 9: Print Celsius C

Step 10: Stop

8. Write a shell script to read an integer find out the reverse of the integer using

function andcheck whether integer is palindrome or not.

Algorithm:

Step 1:Start

Step2: read n

Step 3: copy n into m for later use. Also, initialize rn;

Step 5:while n is not zero

1. r = n % 10

2. n = n/10

3. rn = rn*10 + r;

Step 6: if m equal rn then the number is palindrome.

Step 7: Else Print number is not palindrome

Step 8: Stop

9

9. Write a shell script to read an integer find out the factorial of the integer.

Algorithm:

Step1: Start

Step2: Read a number ‘n’ and fact=1

Step3:if n==1 then

Return(1)

Step4: else

For i=0 to i<n

Factorial=fact*fact(n-1)

Return(fact)

Step4: Stop

10. Write a shell script program to read an array of ‘n’ integers and perform linear

searchoperation.

Algorithm:

Step 1: Start

Step 2: Read the array A of ‘n’ elements, f=0

Step 3: Read the element ‘x’ to be searched in A

Step 4: Set i to 0

Step 5: if i> n then go to step 10

Step 6: if A[i] = x then f=1 and go to step 9

Step 7: Set i to i + 1

Step 8: Go to Step 5

Step 9: Print Element x Found at index i+1 and go to step 11

Step 10: if f=0 then Print element not found

Step 11: Stop

11.Write a shell script program to read an array of ‘n’ integers and sort number in

ascendingorder using bubble sort technique.

Algorithm:

Step1: Start

Step2: Read the number of array elements

Step3: for i = 0 to n-1

Read array[i]

Step4: for i = 0 to n-1

for j = 0 to n-i-1

if (array[i]>array[j+1]) then

Temp=array[j]

Array[j]=array[j+1]

Array[j+1]=temp

Step7: Display array elements

Step8:Stop

12. Write a shell script program to read an array of ‘n’ integers and perform binary

search.

Algorithm:

10

Step 1: Start

Step 2: Read the array a of n elements, f=0

Step 3: Sort using any algorithm

Step 4: Read the element to be searched in x

Step 5: Set L=0 the lower limit and u=n-1 the upper limit

Step 6: Repeat the steps 7,8,9,10 until u>=L

Step 7: mid =(L+u)/2

Step 8: when a[mid]==x f=1 print the search is successful, display the position goto step 12

Step 9: when a[mid]<x L=mid+1

Step 10:when a[mid]>x u=mid-1

Step 11:if f==0 print search is unsuccessful

Step 12:Stop

PROCESSCREATION

AIM: To write a C program to perform process creation using fork() system call.

Algorithm:

Step1:Startprogram.

Step 2: Assign fork() system call to pid.

Step 3: if pid is equal to -1, child process not created.

Step 4: if pid is equal to 0, child process will be created.

Step 5: Print the id of parent process and child process.

Step 6: Create another one child process in same loop.

Step 7: Print id of parent process and the child process.

Step 8: Print grand parent id.

Step 9: Stop the program.

Note:-The fork() is a system which will create a new child process. The child process created

is an identical process to the parent except that has a new system process ID. The process is

copied in memory from its parent process, then a new process structure is assigned by the

kernel. The return value of the function is which discriminates the two threads of execution.

A 0 is returned by the fork function in the child's process, while the PID of the child process

is returned in the parent's process.

In brief, fork() creates a child process that differs from the parent process only in its PID and

PPID (the Parent PID, the creator of the process), and in the fact that resource utilizations are

set to 0. File locks and pending signals are not inherited. Under Linux, fork() is implemented

using copy-on-write pages, so the only penalty that it incurs is the time and memory required

to duplicate the parent's page tables, and to create a unique task structure for the child.

THREADING

AIM:Thread creation:

#include <stdio.h>

#include <stdlib.h>

#include <pthread.h>

void *print_message_function(void *ptr);

11

main()

{

pthread_t thread1, thread2;

 char *message1 = "Thread 1";

 char *message2 = "Thread 2";

 int iret1, iret2;

 /* Create independent threads each of which will execute function */

 iret1 = pthread_create(&thread1, NULL, print_message_function, (void*) message1);

 iret2 = pthread_create(&thread2, NULL, print_message_function, (void*) message2);

 /* Wait till threads are complete before main continues. Unless we */

 /* wait we run the risk of executing an exit which will terminate */

 /* the process and all threads before the threads have completed. */

pthread_join(thread1, NULL);

pthread_join(thread2, NULL);

printf("Thread 1 returns: %d\n",iret1);

printf("Thread 2 returns: %d\n",iret2);

 exit(0);

}

void *print_message_function(void *ptr)

{

 char *message;

 message = (char *) ptr;

printf("%s \n", message);

SCHEDULING ALGORITHMS

1. First Come First ServeScheduling (FCFS Scheduling)

i) Jobs are executed on first come and first serve basis

ii) It is a non pre-emptive scheduling algorithm

iii) It is easy to understand and implement

iv) Its implementation is based on first in first out (FIFO) queue

v) It is poor in performance as average waiting time is high

AIM: To write a program to implement CPU & scheduling algorithm for first come

first serve scheduling.

Algorithm:

1. Start the program.

2. Get the number of processes and their burst time.

3. Initialize the waiting time for process 1 and 0.

4. Process for(i=2;i<=n;i++),wt.p[i]=p[i-1]+bt.p[i-1].

5. The waiting time of all the processes is summed then average value time is calculated.

http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_create
http://node1.yo-linux.com/cgi-bin/man2html?cgi_command=pthread_join

12

6. The waiting time of each process and average times are displayed

7. Stop the program

2. Shortest Job First Scheduling (SJF Scheduling)

i) It is a non pre-emptive scheduling algorithm

ii) It is best approach to minimize waiting time

iii) It is easy to implement in batch systems where required CPU time is known in advance

iv) Impossible to implement in interactive systems where required CPU time is not known

v) The processor should know in advance how much time process will take

AIM: To write a program to implement CPUandscheduling algorithm for shortest job

first scheduling.

Algorithm:

1. Start the program. Get the number of processes and their burst time.

2. Initialize the waiting time for process 1 as 0.

3. The processes are stored according to their burst time.

4.The waiting time for the processes are calculated as follows:

for(i=2;i<=n;i++), wt.p[i]=p[i=1]+bt.p[i-1].

5. The waiting time of all the processes summed and then the average time is calculate

6. The waiting time of each processes and average time are displayed.

7. Stop the program.

3. Priority Scheduling

i) SJF scheduling is special case of priority scheduling

ii) Priority is associated with each process

iii) CPU is allotted to the process with the highest priority

iv) For the case of equal priority, processes are scheduled on the basis of FCFS

v) It is a non pre-emptive scheduling

vi) Priority can be decided based on memory or time requirements or any other

 resource requirements

AIM: To write a program to perform priority scheduling.

Algorithm:

1. Start the program.

2. Read burst time, waiting time, turn the around time and priority.

3. Initialize the waiting time for process 1 and 0.

4. Based up on the priority process are arranged

5. The waiting time of all the processes is summed and then the average waiting time

6. The waiting time of each process and average waiting time are displayed based on the

priority.

7. Stop the program.

4. Round Robin Scheduling

13

i) It is pre-emptive process scheduling algorithm

ii) Each process is provided a fix time to execute, it is called a quantum

iii) Once a process is executed for a given time period, it will be pre-empted at that given

 timeand other process will execute for a given time period

AIM: To write a program to implement CPUand scheduling for Round Robin

Scheduling.

Algorithm:

1. Get the number of process and their burst time.

2. Initialize the array for Round Robin circular queue as ‘0’.

3. The burst time of each process is divided and the quotients are stored on the round Robin

array.

4. According to the array value the waiting time for each process and the average time are

calculated as line the other scheduling.

5. The waiting time for each process and average times are displayed.

6. Stop the program.

SIMULATE ALGORITHM FOR DEADLOCK AVOIDANCE

The Banker's algorithm is a resource allocation & deadlock avoidance algorithm developed

by EdsgerDijkstra that tests for safety by simulating the allocation of pre-determined

maximum possible amounts of all resources, and then makes a "safe-state" check to test for

possible deadlock conditions for all other pending activities, before deciding whether

allocation should be allowed to continue.

The basic data structures used to implement this algorithm are given below

Let n be the total number of processes and m be the total number of resource types in the

system.

Available: A vector of length m. It shows number of available resources of each type. If

Available[i] = k, then k instances of resource Ri are available.

Max: An n×m matrix that contain maximum demand of each process. If Max[i,j] = k, then

process Pi can request maximum k instances of resource type Rj.

Allocation: An n×m matrix that contain number of resources of each type currently allocated

to each process. If Allocation[i,j] = k, then Pi is currently allocated k instances of resource

type Rj.

Need: An n×m matrix that shows the remaining resource need of each process. If Need[i,j] =

k, then process Pi may need k more instances of resource type Rj to complete the task.

Working Rule

Banker’s Algorithm is executed whenever any process puts forward the request for allocating

the resources.It involves the following steps.

14

Step-01:

Banker’s Algorithm checks whether the request made by the process is valid or not.

If the request is invalid, it aborts the request.

If the request is valid, it follows step-02.

Step-02:

Banker’s Algorithm checks whether the request made by the process is valid or not.

If the request is invalid, it aborts the request.

If the request is valid, it follows step-03.

Step-03:

Banker’s Algorithm makes an assumption that the requested resources have been allocated to

the process.

Then, it modifies its data structures accordingly and moves from one state to the other state.

Now, Banker’s Algorithm follows the safety algorithm to check whether the resulting state it

has entered in is a safe state or not.

If it is a safe state, then it allocates the requested resources to the process in actual.

If it is an unsafe state, then it rollbacks to its previous state and asks the process to wait

longer.

